
 'reare

ALGORITHMS AND OBJECT-ORIENTED SOFTWARE FOR

DISTRIBUTED PHYSICS-BASED MODELING

FISCAL YEAR REPORT

PERIOD: June 19, 2001 - September 19, 2001

CONTRACT NAS1-01085

CREARE PROJECT 8728

Marc A. Kenton

Principal Investigator

Jerry Bieszczad

Engineer

Creare Incorporated

Hanover, NH 03755

September 28, 2001
8728

 reare

1.0 INTRODUCTION

The project seeks to develop methods to more efficiently simulate aerospace vehicles.

The goals are to reduce model development time, increase accuracy (e.g., by allowing the

integration of multi-disciplinary models), facilitate collaboration by geographically-distributed

groups of engineers, support uncertainty analysis and optimization, reduce hardware costs, and

increase execution speeds. These problems are the subject of considerable contemporary

research (e.g., Biedron et al. 1999; Heath and Dick, 2000).

All of these goals can be addressed by allowing complicated systems with intricate inter-

connections and strong internal feedback mechanisms to be represented by semi-independent

subsystems. Each subsystem is modeled in detail by separate (possibly geographically-

distributed) groups of engineers and then each subsystem model is executed on a separate

processor of a computer network. The development and implementation of such an approach is

the subject of this project. The deliverables from the project will be mathematical techniques to

allow the linking of the separate subsystem models, an object-oriented methodology for

developing the models, and a software library that facilitates the process.

The potential pay-off of this technology is very large, in terms of both hardware and

software development costs. Hardware costs are reduced by allowing networked processors to be

efficiently used for detailed simulation of complicated aerospace systems. Software costs are

reduced by a divide-and-conquer approach that directly attacks complexity, supports

interdisciplinary modeling, promotes object-oriented techniques, and allows efficient re-use of

component or subsystem models developed on earlier projects.

The primary initial focus of the project is on lumped parameter simulation models (not,

for example, single discipline finite element models). If the overall model is to be divided into

separate subsystem models, these sub-models must be mathematically integrated in a way that

provides computationally-stable results in the face of strong feedbacks and complicated

interactions between the subsystems. Stable integration is accomplished by automatically

generating simplified versions of each subsystem model from the detailed model created by its

analysts. These simplified models serve on the other processors of the network as an accurate
stand-in for the associated detailed model for short periods of time. Thus, if we break an entire

system into N subsystems, then each of N processors in a network could solve one detailed

subsystem model and N-1 simplified models for the other subsystems. The latter provide the

required feedback necessary for the stable integration of the detailed subsystem model. The

simplified models are kept accurate by periodically updating them to account for changes in the

nominal operating state.

The project commenced on June 19, 2001. The remainder of this report documents the

work performed during FY2001.

, reare

2.0 DEFINITION OF OBJECT-ORIENTED Architecture (Task 2.1)

2.1 OVERALL DESIGN AND COMMUNICATIONS

Figure 1 shows the implementation of an aerospace vehicle simulation. In this particular

example, the entire vehicle model consists of three subsystems (we expect typical cases to

involve many more subsystems than used in this example). A detailed model of each of these

subsystems is executed on a separate computer of a network, although this too need not

necessarily be the case. For example, all subsystem models could execute on a single processor,

on separate processors of a multiple-processor computer, some processors could execute more

than one detailed model, etc. In any case, a number of processes are created, each of which

consists of a detailed subsystem model paired with simplified versions of the other subsystem

models. The latter provide the proper numerical feedbacks to enable stable integration of the

detailed model's equations. Each of the detailed models periodically updates its simplified

counterpart and sends a description of the new simplified model to the other processes for their

use.

A key design goal is to ensure that this partitioning process can be hosted on a diverse set

of computer hardware and operating systems. For this reason, a survey of available

communications protocols was undertaken, and the CORBA® system for communicating

between the separate processes was selected. CORBA provides all the needed functionality, is

actively being developed, and is supported on a wide array of vendor hardware. One key feature

of this system is that it transparently accounts for differences in how data is stored internally on

different computer systems.

-.---b

Simulation_Process 1

Detailed_Model 1

SimplifiedModel 2

Simplified_Model 3

Simplified_Model 1

Receive Protocol

Transmit Protocol

Simulation_Process 2

Detailed_Model 2

Simplified_Model 1

Simplified_Model 3

Simplified_Model 2

Receive Protocol

Transmit Protocol

l

4--

,II--

Simulation_Process 3

__J Detailed_Model 3
|

Simplified_Model 1

L Simplified_Model 2

---b.I Simplified_Model 3

Receive Protocol

--t_ Transmit Protocol

,t
Simulation_Manager

History of Simplified_Model 1

History of Simplified_Model 2
History of Simplified_Model 3

Object Request Broker (CORBA)

Figure 1. Architecture of an Example Simulation Utilizing 3 Processes

2

 reare

When a detailed model determines that its previously-generated simplified model has

become obsolete and should be updated, it creates this model using the algorithms being

developed in Task 2. The detailed model then sends a data structure that defines the new model

via CORBA to the "Simulation Manager." The Simulation Manager then forwards the model to

all the other detailed models that are executing on the remote processors of the overall system (or

to detailed models executing as separate processes on the same processor, if applicable). The

new model is received by a dedicated ("receiver") server that was previously spawned by each of

the remote detailed models for this purpose. The receiver then pipes this data structure to the

detailed model, where it replaces the now-obsolete version. While we expect that pipes are

available on any candidate computer system (they are certainly available on Windows- and all

Unix-based systems), other schemes for inter-process communications (e.g., shared memory)

would work equally well.

A simple demonstration application was written to ensure that there were no hidden

problems with this architecture. The demonstration emulated Figure 1 closely in that it involved

the rapid transmission of simulated simplified models from two detailed model processes to a

remote process simulating a third detailed model. This demonstration was successfully run under

Windows NT, and no problems such as might be caused by collisions between simultaneously

transmitted models were noted.

For transient problems, a last detail needs to be mentioned. For illustration purposes,

assume that detailed model number 1 has the slowest execution time. The Simulation Manager

will eventually receive information that the simplified version of model 1 has become obsolete at

some simulation time t. In general, the other, faster processes will have gone past time t by the

time this information is received. In this case, the Simulation Manager will send an instruction to

the detailed processes that use model 1 to reinitialize at time t using a consistent set of simplified

models that it supplies for this purpose. Thus, the Simulation Manager will keep a history of

simplified models that it can retrieve when reinitialization is required. Since the entire problem

cannot be completed until the slowest model has completed, this complication need not limit the

overall execution speed. This is discussed in more detail in the next section.

2.2 CLASS STRUCTURE AND FUNCTIONALITY

A key design goal of the project is to support object-oriented modeling of complex

systems. Object-oriented modeling is facilitated by allowing the partitioning of a complex

system into relatively independent objects. Partitioning the system in this manner supports the

re-use of model objects developed on previous projects, the development of modified models

through inheritance, and attacks overall model complexity by allowing the subsystem models to

be developed and validated independently.

We have defined a class structure for developing models using this object-oriented

approach. These modeling classes are classified into two categories. The first type, which

include the classes Detailed_Model and Simplified_Model, focus primarily on localized

(i.e., non-distributed) model development and simulation of a single subsystem. These localized

model classes are designed to support a bottom-up modeling approach where a relatively small

@reare

number of engineers initially develop and validate a model of a particular subsystem of an

aerospace vehicle. By encapsulating these subsystem models as components in a common

framework, these classes facilitate subsequent large-scale simulation of the entire aerospace

vehicle. The second type of modeling classes, which include the classes Simulation_Process and

Simulation_Manager, implement the necessary logic and communication protocols for

combining these localized subsystem models into a geographically distributed simulation of a

complex process.

Before describing the details of these object-oriented modeling classes, the overall logic

of a distributed multi-system simulation incorporating these classes is given. During the

following description, it may be helpful to refer to the example depicted in Figure 1.

1) Before the simulation is run, an instance of Simulation_Manager is created on a single

computer. An instance of Simulation_Process is created on each computer hosting a simulation

of a single subsystem. The Simulation_Process creates an instance of Detailed_Model that

represents the model of this subsystem. CORBA addresses are shared among the

Simulation_Manager and the Simulation_Processes.

2) At simulation time zero, the Simulation_Manager requests that all Simulation_Processes

initialize the state variables of their Detailed_Models.

3) After initialization, each Simulation_Process requests that its Detailed_Model generate the

data required to instantiate a Simplified_Model. The Simulation_Process transmits this data to

the Simulation_Manager.

4) Once the Simulation_Manager receives a complete set of Simplified_Model data structures, it

transmits this set to all Simulation_Processes.

5) Once a Simulation_Process receives the complete set of Simplified_Model data structures, it

creates the appropriate number of local instances of the Simplified_Models. It then begins

simultaneous numerical integration of its Detailed_Model and the Simplified_Models. Note that

each Simulation_Process is allowed to proceed at its own integration rate during the simulation.

6) After every integration time step, each Simulation_Process verifies the validity of its local

Simplified_Model. It does this by comparing the values of the estimated outputs from the

Simplified_Model with the actual outputs of its Detailed_Model. If a specified error criterion is

exceeded, the Simulation_Process requests an updated Simplified_Model data structure from its

Detailed_Model. The SimulationProcess then transmits the expiration time of the old

Simplified_Model along with the updated Simplified_Model data structure to the

Simulation_Manager and continues integrating.

7) When the Simulation_Manager receives the first updated Simplified_Model, it records the

expiration time of the old Simplified_Model as well as the updated Simplified_Model data

structure in its history. It transmits the expiration time of lhe old Simplified_Model to all

Simulation_Processes who in turn record it. Two possibilities can be envisioned:

4

@reare

Case-A: The Simulation_Process has not yet integrated to the updated expiration time.

The Simulation_Process now knows that when it reaches this expiration time, it must

request an updated Simplified_Model data structure from the Simulation_Manager. Until

then, it continues integrating with the old Simplified_Model, but does not take a time step

beyond the expiration time of any Simplified_Model.

b) Case-B: The Simulation_Process has already integrated past the expiration time.

Consequently, any results since that time are invalid. The Simulation_Process retreats

by: (i) restoring its state variables to what they were at the expiration time, (ii) asking the

Simulation_Manager for the complete set of Simplified_Models that were valid at the

expiration time, and (iii) continuing integration from that time point.

8) When the Simulation_Manager receives subsequent updated Simplified_Models, it repeats the

process of transmitting its expiration time to all Simulation_Processes (who respond as described

in step 7). In addition, any Simplified_Models in the Simulation_Manager history which were

created at time points beyond the new expiration time are now invalid and are discarded.

The object-oriented structure of the four modeling classes, Detailed_Model,

Simplified_Model, Simulation_Process, and Simulation_Manager, that make implementation of

this logic possible are now described.

The Detailed_Model class is summarized in Table 1. This class encapsulates the

mathematical model of a single subsystem described by a set of ordinary differential equations

and algebraic equations. These differential and algebraic equations are represented by the user-

defined functions calculate_rates_of_change() and calculate outputs(), respectively. The

engineer also specifies the number of state variables, input variables, and output variables for the

model. The Detailed_Model class automatically allocates sufficient computer memory for

storing the values of these variables. In a classic sense, an instance of Detailed_Model is a well-

defined mathematical system that, given constant or time-dependent values of its input variables

and initial values of its state variables, may be used to integrate the time-dependent behavior of

its state and output variables. This integration is automatically carried out numerically by calling

the integrate() function of the Detailed_Model class. The resulting values are documented by

calling the report_values() function. More significantly, however, the Detailed_Model class

extends the functionality of traditional numerical integration routines by also encapsulating the

methodology of the model-order reduction algorithm. As a result, at any instance in simulation

time, the generate_simplified_model() function of the Detailed_Model class can be called to

automatically create a simplified, reduced-order model. This simplified model may then be used

to accurately predict values of the Detailed_Model outputs over short periods of simulation time.

In the class structure, these reduced-order simplified models are encapsulated by instances of the

Simplified_Model class.

@reare

Table 1. Description of Detailed_Model Class

Class: Detailed_Model

Inputs specified by

user:

Class methods:

Class variables:

calculate_rate_of_change() function for computing time-

derivatives of state variables given current values of state

variables, input variables, and time.

calculate_outputs() function for computing values of output

variables given current values of state variables, input variables,

and time.

initialize_states() function for initializing values of state

variables.

number_of_states, number_of_inputs, number_of_outputs

integers that define the dimensions of the model.

integrate() function numerically integrates model over a

specified time interval.

report_values() function reports current values of state, input,

and output variables.

generate_simplified_model() generates the data necessary for

constructing a reduced-order model of the Detailed_Model.

states[] array representing current values of state variables.

states_ddt[] array representing cun'ent values of time

derivatives of state variables.

inputs[] array representing current values of input variables.

outputs[] array representing current values of output variables.

The Simplified_Model class is summarized in Table 2. This class represents a linearized

reduced-order model corresponding to a particular Detailed_Model. The

generate_simplified_model() function of Detailed_Model generates the necessary data in

simplified_model_parameters that is used to create any number of instances of Simplified_Model.

The Detailed_Model also supplies an upper bound estimate of the duration over which the

Simplified_Model is accurate by specifying an expiration_time. Given the same values of input

variables as to the Detailed_Model, the integrate() and calculate_outputs() functions of the

Simplified_Model can accurately predict the outputs of the Detailed_Model over short periods of

simulation time. Note at any point in the simulation when the estimated output values predicted

by the Simplified_Model diverge from the actual output values calculated by the Detailed_Model,

the update_expiration_time() function is used to signal that an updated Simplified_Model is

required at that time point of the simulation. In this manner, an instance of the Simplified_Model

class accurately serves as a substitute for a Detailed_Model over a short time interval. More

significantly, a sequence of updated Simplified_Models accurately serve as substitutes for

calculating the outputs of a Detailed_Model over an entire simulation.

 reare

Table 2. Description of Simplified_ Model Class

Class: Simplified_Model

Inputs specified by

Detailed_Model:

Class methods:

Class variables:

simplified_model__parameters data structure containing

information required for instantiating Simplified_Model class

number_of_transformed states, number_of_inputs,

number_of_outputs which are integers that define the

dimensions of the model.

initial_time which specifies the point in simulation time at

which the simplified model data was generated.

expiration_time which specifies the point in simulation time at

which the simplified model becomes invalid. This time is

determined by comparing predicted outputs with those of its

counterpart Detailed_Model.

integrate() function numerically integrates simplified model

over a specified time interval.

calculate_outputs() function computes values of output

variables given current values of transformed state variables,

input variables, and time.

reportvalues() function reports current values of transformed

state, input, and output variables.

update_expiration_time() function updates the expiration time

at which the Simplified_Model becomes invalid.

transformed_states[] array representing current values of the

transformed state variables.

inputs[] array representing current values of input variables.

outputs[] array representing current values of output variables.

The Detailed_Model class and its Simplified_Model counterpart provide a common

framework that encapsulates single-discipline subsystem models as modular, reusable

components. These classes are designed to be minimally invasive during the modeling process,

allowing engineers to develop new subsystem models or reuse legacy models with little

additional overhead. They also streamline aspects of model development by providing routines

for numerical integration, by automatically and dynamically creating data structures for storing

variable values during simulation, and by reporting simulation results in a structured format.

These classes may also be readily extended and modified through the object-oriented concept of

inheritance. For example, an engineer may extend and modify existing capabilities by defining a

new subclass of the Detailed_Model class. In this subclass, a new integrate() function may be

defined that replaces the default integrate() function with a specialized integration routine.

Likewise, a new report_values() function may be defined that customizes the reporting of

simulation results. Entirely new member functions and variables may also be defined. For

example, a function may be defined in the subclass that determines the value of an input variable

from a signal generated by the controls of a real-time training simulator. Similarly, a new

 'reare

variable may be defined in the subclass that stores a bitmapped image used to depict the model

graphically in a graphical user interface environment.

In our design, we have focused on keeping the Detailed_Model and Simplified_Model

streamlined so that engineers developing subsystem models are not burdened with the intricacies

of distributed simulation of complex systems. Consequently, in our design we have encapsulated

this functionality in two separate classes, Simulation_Process and Simulation_Manager.

The Simulation_Process class is summarized in Table 3. This class represents an

integrated multi-system model with N-component subsystems. Note, however, that as in Figure

1 only one subsystem is represented by a Detailed_Model and the remaining N-1 subsystems are

represented by Simplified_Models. An instance of a Simulation_Process is created on each

computer where the Detailed_Model of a particular subsystem is defined. The overall model is

simulated by the Simulation_Process by integrating the Detailed_Model simultaneously with the

N-1 Simplified_Models.

During this integration, the set of Simplified_Models are updated as dictated by an

instance of the Simulation_Manager. The Simulation_Process communicates with the

Simulation_Manager over the network using CORBA protocol. The Simulation_Manager also

integrates the current simplified version of its Detailed_Model in order to evaluate its validity

after each time step. If an updated Simplified_Model is required, it is generated by the

Detailed_Model and sent by the Simulation_Process to the Simulation_Manager using the

CORBA protocol.

8

 reare

Table 3. Description of Simulation_ Process Class

Class: Simulation Process

Inputs specified by
user:

Inputs specified by

Simulation_Manager:

Class methods:

Class variables:

Detailed_Model which is the locally defined detailed model of a

particular subsystem.

Simplified_Models which are the current set of N-1 simplified

subsystem models received from the Simulation_Manager.

integrate() function simultaneously integrates the

Detailed_Model along with the N-1 Simplified_Models over a

specified time interval.

update_expiration_of_simplified_model() function is used by

Simulation_Manager to update the expiration_time of a

particular Simplified_Model.

transmit_updated_simple_model() function notifies

Simulation_Manager that an updated Simplified_Model version

becomes valid at the current time step.

corba_address represents the unique CORBA identification

number used by the Simulation_Manager to communicate with

the Simulation_Process.

current_simplified_model represents the current simplified

version of the local Detailed_Model, used to determine when an

update is required.

input_output_map maintains a mapping that links all input

variables of all detailed and simplified model with the

appropriate output variable of another detailed or simplified

model.

The Simulation_Manager class is summarized in Table 4. The Simulation_Manager

coordinates communication between the instances of Simulation_Processes running on separate

computers. A single instance of Simulation_Manager is created for an entire distributed multi-

system simulation. This "global" Simulation_Manager may reside on the same computer as a

Simulation_Process, or it may reside independently on a dedicated computer. The

Simulation_Manager serves as a central repository from which simulations are initiated and

where histories of Simplified_Models for each Detailed_Model are maintained. It also serves as a
communication middleman between the individual Simulation_Processes. In this manner, each

Simulation_Process does not need to be aware of and communicate with all other

Simulation_Processes, but rather communicates exclusively with the global

Simulation_Manager.

9

 'reare

Table 4. Description of Simulation_Manager Class

Class:

Inputs specified by

user:

Class methods:

Class variables:

Simulation_Manager

CORBA_addresses that identify all instances of

Simulation_Processes that compose the distributed multi-

system simulation.

initiate_simulation() function requests a Simplified_Model from

each Simulation_Process, transmits these Simplified_Models

among all other Simulation_Processes, and notifies all

Simulation Processes to begin integration.

register_updated_simple_model() function registers a data

structure for constructing an updated Simplified_Model along

with the time interval over which it is valid.

transmit_expiration_of_simplified_model() function

communicates to all Simulation_Processes that a particular

Simplified_Model will become invalid at a specified time point.

simplified_model_history maintains a history of

Simplified_Models for each Simulation_Process and the time

intervals over which they are valid.

3.0 ALGORITHM DEVELOPMENT (TASK 2.2)

3.1 INTRODUCTION

To allow a model to be subdivided into semi-independent subsystems, numerical

techniques are needed that will allow the individual models to be integrated. This must be done

in the presence of strong feedbacks and complicated interactions while still achieving

computationally-stable results. As described above, we accomplish this by automatically

generating simplified versions of each subsystem model from the detailed model created by its

analysts. These simplified models serve as an accurate stand-in for the associated detailed

model for short periods of time. The simplified models are kept accurate by periodically

updating them to account for changes in the nominal operating state.

The subsequent subsections describe an algorithm for automatically developing a

simplified version of a detailed subsystem model.

3.2 MODEL DEFINITION

We assume that a particular subsystem model has been written in the following form:

dw i
-ei(w,y,ct) i=l n (1)

dt

O=gj(w,y,a) j=l,...m (2)

10

@reare

Zk : hk (W, y,a) k=l,...p (3)

In Equations (1-3), w denotes the solution of first order ordinary differential equations

(ODEs), y denotes the solution of algebraic equations, t is the time, and a represents parameters.

The parameters can be time-varying, but their values are assumed to be supplied to the subsystem

model under consideration from outside sources (see below).

This formulation is relatively general, encompassing both transient simulations as well as

purely algebraic (design-type) models (for which the number of ODEs n is zero). We do

currently assume that the defining functions e and g are continuous in the variables w, y, and o_;

relaxation of this requirement will be investigated later in the project. Note that to simplify the

subsequent development, we have assumed that the functions e, g, and h do not depend explicitly

on time. Actually, this does not limit the generality, since we can formally define an additional

variable to replace time:

dw"+l - 1 (4)
dt

In most cases, the number of states n+m will be relatively large, whereas the number of

key outputs p and the number of parameters will be relatively small.

Let us initially consider the solution of the subsystem model Equations (1-3) in a

standalone fashion, without regard to the other subsystems with which it may interact. In this

parochial view, the interfaces between the model under consideration and those representing the

adjoining subsystems of the vehicle are defined by what may be considered "input parameters."

For example, a turbopump subsystem model requires knowledge of the inlet pressure, which we

assume is supplied by a model for the fuel or oxidizer subsystem. Of course, the outputs of the

latter depend on outputs of the turbopump model, so that the inlet pressure is actually determined

by the interaction between the turbopump and fuel subsystem models, and perhaps others as well.

However, for developing a simplified version of the turbopump model, it is convenient to

temporarily ignore this complication. Thus, the quantities ct include both time-dependent inputs

that are known a priori as well as the outputs of other subsystem models which must be solved.

The quantities z represent output variables of this subsystem that are of particular interest.

These are defined by explicit functions in the other variables. Explicitly defining key outputs in

this way allows us to distinguish the important results of a model from internal details that are

important only in that they affect these results. In particular, the set of the output variables z

includes the interface variables between subsystem models, so that the outputs z from one model

are fed into another model as input "parameters" a to that model. In the example just discussed,

a key output of the turbopump model would be the calculated flow rate, since this will affect the

pressure and other quantities calculated by the fuel subsystem model.

To simplify the mathematical development, it is convenient to initially combine the

algebraic and ODE variables by defining a "flag" O, which has the value 0 for variables defined

11

 reare

explicitly or implicitly by the algebraic Equations (2) and has the value 1 for variables ("true

states") defined by ODEs, Equations (1). Then we can replace Extuations (1) and (2) with:

dx i

0, _ = f(x,a) i=n+m (5)

Note that x is used to denote either an algebraically-defined variable y or an ODE-defined

variable w, andfis used to represent the function for g that defines the state.

3.3 TRANSFORMING THE MODEL INTO AN EQUIVALENT SYSTEM THAT IS AMENABLE TO

MODEL ORDER REDUCTION

The elements of the Jacobian matrix of the subsystem model are defined by:

.l,k = _fi i,k =l,...n+m (6)
Oxk

If we did wish to continue separately identifying the algebraic variables y, the structure of

the matix J would be:

: Oe Oe

Oy

J = b___ggb__gg

bw by

(7)

For the moment, however, we continue to treat the x's and y's in the unified manner implied by

Equation (5).

Following Meirovitch (1980), the ith ("right") eigenvector vri of the Jacobian matrix is

defined by:

J vr_ =)]'i vr/ i=l n (8)

The eigenvectors of the transpose of J are denoted by vlj:

jrvIj =2jvlj j=l n (9)

The eigenvectors of the transpose are unequal to the eigenvectors of the original matrix if

the Jacobian is not symmetric. However, we are justified in using the same symbol)_ for its

eigenvalues, since the eigenvalues of the transpose of a matrix are the same as that of the original

matrix. Taking now the transpose of both sides of Equation (9), we have:

12

 reare

vl_J=2jvl r (10)

Therefore we identify the vl as "left" eigenvectors of the Jacobian. If we multiply Equation (10)

on the fight by vri, multiply Equation (8) on the left by vl r, and subtract the results, we obtain:

0 (2,-),j r=)vlj vr_ (11)

Thus, the left and fight eigenvectors of J corresponding to distinct eigenvalues are

orthogonal. In the more familiar special case in which J is symmetric, the matrix is equal to its

transpose, and the right and left eigenvectors are the same. In such a case, Equation (11) reduces

to the more common statement that the eigenvectors of a symmetric matrix form an orthogonal

set. In the more general case of interest here, in which J is not symmetric, we say that the left

and fight eigenvectors form a "bi-orthogonal" set.

We can multiply either the fight or left eigenvectors by an arbitrary constant without

affecting the validity of Equations (8) and (10). We therefore have the freedom to normalize the

fight and left eigenvectors in such a way that Equation (11) implies:

T

vlj vr,. = 6j_ (12)

where 6j_ is the Kronecker delta (the elements of the identity matrix I). Now define a matrix E

whose jth row contains the jth left eigenvector. Similarly, the matrix EM is defined by arranging

the fight eigenvectors by columns. Finally, we define the n'latrix A whose i th on-diagonal

element is _.i.

Given these definitions, the ji th matrix element of the product of E and EM is given by the

scalar product of the two corresponding eigenvectors:

= vlj vr_ (13)(EEM)j i r

Using Equation (12), the product of E and EM is:

EEM= I (14)

Thus, EM is the inverse of E. If we multiply both sides of Equation (14) on the fight by E and re-

group, we also obtain:

E(EM E) = E (15)

from which we conclude that:

EM E = I (16)

13

@reare

In view of the definition of EM, Equation (8) can be re-written:

J EM : EM A (17)

Multiplying both sides of Equation (17) on the left by E and using Equation (14) we have:

EJEM =A (18)

That is, E and EM comprise a similarity transformation that diagonalizes the Jacobian.

With these preliminaries out of the way, we now proceed to develop a transformed

subsystem model that will support simplified model development, i.e. "model order reduction."

We assume that the model is to be used over a sufficiently short interval that linearization of the

model around its initial state can be justified. The changes _i__x.in the state vector x from the

values about which it was linearized are given by:

O, d&_ _ j_kfix_ + Of_ 5ctk + fi o i=l,...n+m (19)
dt Oa k

(no sum on i)

In Equation (19) and henceforth, the Einstein summation convention is used unless stated

otherwise, i.e., in this case summation is implied over the repeated index k but not over index i.

Dropping the matrix and vector subscripts, pre-multiplying Equation (19) by E, and using

Equation (16), we can write:

EO-_" = EJ(EM E)8oc+ E_J _a+ Ef °
dt Oct

(20)

Regrouping and using Equation (18), we obtain:

^ ^

^ Of ^0 d6x -A 6x+ 6ct+f ° (21)
dt Oa

In Equation (21), we have adopted the "^" notation to indicate quantities in a transformed

coordinate system. Transformed quantities in this case are obtained by multiplying the original

quantity by the matrix E. In the transformed coordinate system, the ODEs have all been

"disentangled" (by diagonalizing the Jacobian), so that their rates of change no longer depend on

each other. This property can be exploited for model order reduction, as shown in subsections
3.4 and 3.5.

14

@reare

3.4 SOLUTION OF SUBSYSTEM MODEL

By utilizing an integrating factor:

s = e -)'' (22)

one can readily obtain the exact solution of the ODEs represented by the linearized and

transformed system model Equation (21) (Kaplan, 1952). At this point, it is now useful to

resume distinguishing the ODEs from algebraic equations, and we restore the w-y/e-g notation

for that purpose.

After integration, we obtain for the transformed ODEs:

^

^ l t ^o

(_wi(t) = ea,, {ie__ Oe, 8% (t)dr +ie_a,_e ' dr} (23)
o O°tk o

(no sum on i)

The algebraic equations represented by the terms in Equation (21) for which 0j = 0 need not be

integrated, of course. Representing their counterparts in the transformed coordinate system by
^

y, their solution is:

^

^

0 gj _c_k + gJo

^ Oa k
y j = (24)

-2j

For either the algebraic or differential equations, the states in the original coordinate system can

be calculated if desired by reversing the effects of the coordinate transformation E using its

inverse, EM "

^

k = EM ki (xi (25)

3.5 MODEL ORDER REDUCTION

Our ultimate goal is to obtain a simplified model that can calculate the key outputs z to a

specified accuracy over a short time interval. The time interval is limited to a period over which

the linearized version of the nonlinear subsystem model is considered sufficiently accurate. To

develop the simplified model, we linearize the equations for the output variables:

zk (t) = 0hk _x 0hk _o_ (t) + z_'
Ox------fi(t) + Oa-----2 ,,,

(26)

15

 reare

Equation (26) can also be expressed in terms of the transformed (^) variables. To this end, we

first use Equation 25 to define a transformed version of --_h that utilizes transformed variables
3x

^

6; x rather than the original states _x"

h k t)hk

--_x_ EMm' (27)

Substituting Equations (23), (24), and (27) into Equation (26), we have:

^ ^

t t ^0

zk (t) = --_wiOh_ea''(ie-'_'_oO_mOei 6;_m(v)dv +ie-;_ei,, dr)-I

^

^

OgJ 6;ot,. + o

+Oh, +Z;
Oyj - 2j barn

(28)

Equation (28) formally represents the linearized values of the output variables in terms of

the input parameters, various constants, and time. The first set of terms on the right-hand-side of

the equation represent the contributions of the transformed ODEs, and the second set of terms

represent the effects of the transformed algebraic variables. The second to last term represents

the "direct" effect of changing parameters on z. The only approximations involved in writing

Equation (28) are those associated with linearizing the functions e, g, and h appearing in

Equations (1-3).

As it stands, Equation (28) is not especially useful, since it includes numerous terms

resulting from the large number of equations n+m in the subsystem model. To simplify this

expression, first note that the contributions to the outputs from the algebraic equations can be

simply combined with the last two terms. The terms z_ in Equation (28) become:

^
^

Ohk g_
o o (29)Z k --_ Z k +

Oyj -2j

Ohk

Similarly, we add to the direct effect term _ a quantity that reflects the effect of a change in

A

parameter c_,,acting through the variables 6; y •

^

Ogj
^

Ohk --_ --Ohk + O h, 0_.,

Oa., Oar. Oyj -- Aj
(30)

16

 reare

This eliminates all the algebraic terms from Equation(28), affording a considerable

simplification in the approximate subsystem model if the number of algebraic equations m is

large.

To simplify the terms associate with the ODEs, we assume that the model is to be used

over an interval [0,T], at the end of which the model is to be updated to account for nonlinear

effects. We further assume that the maximum duration T that the model could be used can be

specified. For the limited purpose of assessing the relative importance of the remaining terms in

Equation (28), we assert that it is sufficient to consider the special case where the parameters o_

are held constant over the interval [0,T]. In this case, the ODE terms in Equation (28) can be

integrated and the result substituted into Equation (26) to yield their contribution to the output

variables:

^ ^

zk (T) = 0 h_ (e _r - 1), 0 ei "
OWi "_i t'v----- a"'Oa,. + e°)+"" (31)

This expression allows the order of the model to be systematically reduced as will now be

discussed.

a. Elimination of Numerically Stiff ODE States

Consider the product of each eigenvalue _,i and a characteristic minimum time of interest,

e.g., the time step used for integration. If this product is sufficiently negative, the associated state

goes through a very fast transient and reaches a new steady-state quickly. Such states are often

termed "stiff," and in this case the underlying ODE can be algebraically eliminated by assuming

that the state variable instantly achieves its steady-state value in response to changes in input

parameters. Therefore, to eliminate a stiff state we solve Equation (21) by assuming that the

transient happens over such a short interval that the states can always be assumed to reflect their

quasi-steady-state values. These steady-state solutions are obtained by setting the rate-of-change

to zero, yielding:

^

^

ei 6c,. + o
,, ss _Olm ei
wi = (32)

Not surprisingly, this is the same form obtained for the model equations that were originally

given in algebraic form, Equation (24). As was done for the algebraic equations, the contribution

of this state to the output variable z_' can be included by adding to each of the terms z_ in

Equation (26) the following term:

17

@reare

^ ^

o

o o ¢)hk e,
z_ --_ zk + (33)

_w i - 2 i

Similarly, we add to the i)h_-- term a quantity that reflects the effect of a change in the parameter
0or,,

^

acting through the variable 5 w, •

^

,, _ei

"Ohk _ _h k _ h k _ot,,,+ (34)
t'm _m _Wi --/_i

This process eliminates all the stiff states, subsuming their contributions within the direct effects

of parameter changes on the output variables.

b. Elimination of Unobservable or Barely Observable ODE States

We can also eliminate states that have a transient behavior, but do not contribute

substantially to the output variable. In control theory, such states are often called

"unobservable," since they don't affect the outputs appreciably. From Equation (31), for any set

of constant inputs _a,. the contribution of state i to the change in a given output zk over T is

given by:

Oh k (e ;_r-1) Oe i - ^

Owi ,3,, (_ O'Ot,,,+ e °)
(35)

(no sum on i)

In general, we expect only a relatively small number of the transformed states to

contribute significantly to each output variable. When we evaluate each of the states, several

situations may be found that permit simplification:

1)
^

If a state w, contributes very little to one of the zk, all the associated terms can be eliminated

completely.

2) If only the last term of Equation (35) is significant, then the state can be integrated to time

t<T and the result added to the "base" term z_ in Equation (26). The base term now

becomes an explicit function of time:

18

 reare

^

,, o Oh k (e a't-1) o
zk --_ zk + e/ (36)

Ow, 2,

ff convenient for the software implementation, this term can alternatively remain represented

by an integral, albeit a trivial one.

3) if, as expected, some but not all of the parameter-dependent terms of the state contribute

significantly to the total change in Zk, then only the significant terms need to be included in

Equation (28). Note that the magnitude of the changes in parameter 6ct,, (t) need not be

known ahead of time since we base the decision on whether to include a term on its relative

contribution to the sum over states i for a given m.

Using this process, the form of Equation (28) can be simplified until it contains the

minimum number of terms necessary to calculate the key outputs of a subsystem model over a

limited time interval.

3.6 CONCLUSIONS

A method to develop simplified subsystem models defined by first-order ODEs and

algebraic equations has been outlined. The simplified models are created by linearizing the full

system equations around the current operating point, diagonalizing the linearized versions of the

model equations, and then including only those terms necessary to calculate specifically

identified outputs to a defined accuracy. Assuming the time interval over which the model is

used is sufficiently short to justify linearization, the only additional assumption is that the

defining equations do not possess discontinuities. Means for relaxing this last assumption will

be evaluated as the project proceeds.

4.0 REFERENCES

Biedron, R. T., Mehrotra, P., Nelson, M. L., Preston, F. S., Rehder, J. J., Rogers, J. L., Rudy, D.

H., Sobieski, J., and Storaasli, O.O., "Compute as Fast as the Engineers Can Think!," Langley

Research Center, NASA/TM- 1999-209715, September 1999.

Heath, M.T. and Dick, W.A., "Virtual Prototyping of Solid Propellant Rockets, Computing in

Science and Engineering, March/April 2000.

Kaplan, W., Advanced Calculus, Addison-Wesley, 1952.

Meirovitch, L., Computational Methods in Structural Dynamics, Sijthoff and Noordhoff, 1980,

p 70-72.

19

